Skip to main content

الأسي الحركة من المتوسط - ابفيف


فيلتر إكسبريس في يحدد الأنواع التالية من الفلاتر لاستخدامها: لوباس، هايباس، ممر الموجة، باندستوب، أو التمهيد. الافتراضي هو لوباس. يحتوي على الخيارات التالية: تردد القطع (هرتز) 8212 يحدد تردد قطع مرشح. يتوفر هذا الخيار فقط عند تحديد لوباس أو هيباس من القائمة المنسدلة نوع التصفية. الافتراضي هو 100. انخفاض قطع تردد (هرتز) 8212 يحدد تردد قطع منخفض من التصفية. يجب أن يكون تردد قطع منخفض (هرتز) أقل من تردد قطع عالية (هرتز) ومراقبة معيار نيكيست. الافتراضي هو 100. لا يتوفر هذا الخيار إلا عند تحديد باندباس أو باندستوب من القائمة المنسدلة نوع التصفية. ارتفاع تردد قطع (هرتز) 8212 يحدد ارتفاع قطع التردد من التصفية. يجب أن يكون تردد قطع عالية (هرتز) أكبر من التردد قطع منخفض (هرتز) ومراقبة معيار نيكيست. الافتراضي هو 400. لا يتوفر هذا الخيار إلا عند تحديد باندباس أو باندستوب من القائمة المنسدلة نوع التصفية. مرشح استجابة النبض المحدود (فير) 8212 ينشئ فلتر معلومات الطيران. الذي يعتمد فقط على المدخلات الحالية والسابقة. ونظرا لأن الفلتر لا يعتمد على النواتج السابقة، فإن الاستجابة النبضية تتلاشى إلى الصفر في مقدار محدود من الزمن. لأن مرشحات فير ترجع استجابة المرحلة الخطية، استخدم مرشحات فير للتطبيقات التي تتطلب استجابة المرحلة الخطية. الصنابير 8212 يحدد إجمالي عدد معاملات فير، التي يجب أن تكون أكبر من الصفر. الافتراضي هو 29. يتوفر هذا الخيار فقط عند تحديد الخيار فيلتر النبض الاستجابة (فير). زيادة قيمة الصنابير يسبب الانتقال بين نطاق التمرير و ستوباند لتصبح أكثر حدة. ومع ذلك، مع زيادة قيمة الصنابير، تصبح سرعة المعالجة أبطأ. مرشح استجابة الاندفاع اللانهائي (إير) 8212 ينشئ فلتر إير وهو مرشح رقمي مع استجابات نبضية يمكن نظريا أن تكون لانهائية في الطول أو المدة. طوبولوجيا 8212 يحدد نوع تصميم الفلتر. يمكنك إنشاء إما بوترورث، تشيبيشيف، معكوس تشيبيشيف، بيضاوي الشكل، أو تصميم فلتر بسل. یتوفر ھذا الخیار فقط عند تحدید خیار ترکیب الاستجابة اللانهائیة (إير). الافتراضي هو بوترورث. طلب 8212 طلب فلتر إير، الذي يجب أن يكون أكبر من الصفر. یتوفر ھذا الخیار فقط عند تحدید خیار ترکیب الاستجابة اللانهائیة (إير). الافتراضي هو 3. زيادة قيمة النظام يسبب الانتقال بين نطاق التمرير و ستوباند لتصبح أكثر حدة. ومع ذلك، مع زيادة قيمة النظام، تصبح سرعة المعالجة أبطأ، ويزداد عدد النقاط المشوهة عند بداية الإشارة. المتوسط ​​المتحرك 8212 يؤدي إلى معاملات في الأمام فقط (فير). يتوفر هذا الخيار فقط عند تحديد التمويه من القائمة المنسدلة نوع التصفية. مستطيلة 8212 يحدد أن جميع العينات في إطار متحرك المتوسط ​​موزون بالتساوي في حساب كل عينة الانتاج السلس. يتوفر هذا الخيار فقط عند تحديد التمويه من القائمة المنسدلة نوع التصفية وخيار المتوسط ​​المتحرك. ثريانغولار 8212 يحدد أن نافذة الترجيح المتحركة المطبقة على العينات هي ثلاثية مع الذروة المتمركزة في منتصف النافذة، تتساقط بشكل متناظر على جانبي العينة المركزية. يتوفر هذا الخيار فقط عند تحديد التمويه من القائمة المنسدلة نوع التصفية وخيار المتوسط ​​المتحرك. نصف عرض المتوسط ​​المتحرك 8212 يحدد نصف عرض نافذة المتوسط ​​المتحرك في العينات. ويكون االفتراض هو 1. بالنسبة لنصف العرض للمتوسط ​​المتحرك M، يكون العرض الكامل لنافذة المتوسط ​​المتحرك هو عينات N 1 2M. ولذلك، فإن العرض الكامل N هو دائما عدد فردي من العينات. يتوفر هذا الخيار فقط عند تحديد التمويه من القائمة المنسدلة نوع التصفية وخيار المتوسط ​​المتحرك. الأسي 8212 يولد معاملات إر من الدرجة الأولى. يتوفر هذا الخيار فقط عند تحديد التمويه من القائمة المنسدلة نوع التصفية. الوقت الثابت للمتوسط ​​الأسي 8212 يحدد ثابت الوقت لمرشح الترجيح الأسي بالثواني. الافتراضي هو 0.001. يتوفر هذا الخيار فقط عند تحديد التمويه من القائمة المنسدلة نوع التصفية والخيار الأسي. لعرض إشارة الدخل. إذا كنت البيانات الأسلاك إلى اكسبريس السادس وتشغيله، يعرض إشارة الإدخال البيانات الحقيقية. إذا قمت بإغلاق وإعادة فتح إكسبريس السادس، يعرض إشارة الإدخال بيانات العينة حتى تقوم بتشغيل إكسبريس في مرة أخرى. يعرض معاينة القياس. تشير مؤامرة معاينة النتائج إلى قيمة القياس المحدد بخط متقطع. إذا كنت البيانات الأسلاك إلى اكسبريس السادس وتشغيل السادس، يعرض معاينة النتائج البيانات الحقيقية. إذا قمت بإغلاق وإعادة فتح إكسبريس في يعرض "معاينة النتائج" نموذج البيانات حتى تقوم بتشغيل في مرة أخرى. إذا كانت قيم تردد القطع غير صالحة، لا تعرض معاينة النتائج بيانات صالحة. يحتوي على الخيارات التالية: ملاحظة لا يؤثر تغيير الخيارات في المقطع "طريقة العرض" على سلوك فيلتر إكسبريس في. استخدم خيارات وضع العرض لتصور ما يفعله المرشح للإشارة. لا يقوم لابفيو بحفظ هذه الخيارات عند إغلاق مربع حوار التكوين. إشارات 8212 يعرض استجابة المرشح كإشارات حقيقية. إظهار كطيف 8212 يحدد ما إذا كان سيتم عرض الإشارات الحقيقية لاستجابة الفلتر كطيف تردد أو ترك العرض كعرض يستند إلى الوقت. عرض التردد مفيد لعرض كيف يؤثر الفلتر على مكونات التردد المختلفة للإشارة. الافتراضي هو عرض استجابة عامل التصفية كعرض يستند إلى الوقت. يتوفر هذا الخيار فقط عند تحديد الخيار إشارات. وظيفة النقل 8212 يعرض استجابة الفلتر كدالة نقل. يحتوي على الخيارات التالية: حجم في ديسيبل 8212 يقدم استجابة حجم مرشح في ديسيبل. التردد في السجل 8212 يعرض استجابة التردد للمرشاح على مقياس لوغاريتمي. يعرض استجابة حجم المرشح. تتوفر هذه الشاشة فقط عند ضبط وضع العرض على وظيفة النقل. يعرض استجابة المرحلة للمرشح. تتوفر هذه الشاشة فقط عند تعيين وضع العرض لنقل وظيفة. تحديث 12 مارس 2013 ما هي تصفية أرسي ومتوسط ​​أسي وكيف تختلفان الإجابة على الجزء الثاني من السؤال هو أنها هي نفس العملية إذا كان أحد يأتي من خلفية الالكترونيات ثم أرسي تصفية (أو أرسي تجانس) هو التعبير المعتاد. ومن ناحية أخرى فإن النهج القائم على إحصاءات السلاسل الزمنية له اسم الأسي المتوسط، أو استخدام الاسم الكامل الأسي المتحرك المتوسط ​​المرجح. ويعرف هذا أيضا باسم إوما أو إما. والميزة الرئيسية لهذه الطريقة هي بساطة الصيغة لحساب الناتج التالي. فإنه يأخذ جزء من الانتاج السابق واحد ناقص هذا الكسر مرات الإدخال الحالي. الجبرى في الوقت k يتم إعطاء الناتج السلس ذ ك كما هو مبين في وقت لاحق هذه الصيغة البسيطة تؤكد الأحداث الأخيرة، ينعم الاختلافات عالية التردد ويكشف الاتجاهات على المدى الطويل. ملاحظة هناك نوعان من المعادلة المتوسط ​​الأسي، واحد أعلاه ومتغير كلاهما صحيح. انظر الملاحظات في نهاية المقال لمزيد من التفاصيل. في هذه المناقشة سوف نستخدم فقط المعادلة (1). يتم كتابة الصيغة أعلاه أحيانا بطريقة أكثر محدودية. كيف يتم استخلاص هذه الصيغة وما هو تفسيرها النقطة الرئيسية هي كيف نختار. للنظر في هذه الطريقة البسيطة واحدة هي النظر في مرشح تمرير منخفض أرسي. الآن مرشح تمرير منخفض أرسي هو مجرد سلسلة المقاوم R ومكثف مواز C كما هو موضح أدناه. المعادلة سلسلة زمنية لهذه الدائرة هو المنتج أرسي ديه وحدات من الوقت ويعرف باسم ثابت الوقت، T. للدائرة. لنفترض أننا نمثل المعادلة المذكورة أعلاه في شكلها الرقمي لسلسلة زمنية والتي لديها بيانات اتخذت كل ساعة ث. لدينا هذا هو بالضبط نفس شكل المعادلة السابقة. مقارنة العلاقات اثنين لدينا لدينا مما يقلل إلى علاقة بسيطة جدا وبالتالي فإن اختيار N يسترشد ما ثابت الوقت الذي اخترناه. ويمكن الآن التعرف على المعادلة (1) كمرشاح تمرير منخفض، ويحدد ثابت الوقت سلوك الفلتر. لمعرفة أهمية الوقت ثابت نحن بحاجة إلى النظر في سمة تردد هذا تمريرة منخفضة مرشح أرسي. في شكله العام هذا هو التعبير في شكل نموذج ومرحلة لدينا حيث زاوية المرحلة هي. ويسمى تردد قطع الاسمي تردد. ومن الناحية المادية، قد يتبين أنه عند هذا التردد تم تخفيض القدرة في الإشارة بمقدار النصف، كما أن السعة تقل بمقدار العامل. وبعبارة دب، يكون هذا التردد حيث تم تخفيض الاتساع بواسطة 3DB. ومن الواضح أن الوقت ثابت T يزيد حتى ذلك الحين خفض التردد يقلل ونحن تطبيق أكثر تمهيد للبيانات، وهذا هو أننا القضاء على الترددات العالية. ومن المهم أن نلاحظ أن استجابة التردد معبر عنها بالراديان ثانية. وهذا هو أحد العوامل التي ينطوي عليها الأمر. على سبيل المثال اختيار ثابت الوقت من 5 ثوان يعطي فعال قطع تردد. واحد استخدام شعبية من أرسي تجانس هو محاكاة عمل متر مثل المستخدمة في مستوى الصوت متر. وتصنف هذه عادة من خلال وقتهم ثابتة مثل 1 ثانية لأنواع S و 0.125 ثانية لأنواع F. وفي هاتين الحالتين تكون الترددات الفعالة المقطوعة 0.16Hz و 1.27Hz على التوالي. في الواقع ليس الوقت الثابت نحن عادة ترغب في تحديد ولكن تلك الفترات نود أن تشمل. لنفترض أن لدينا إشارة حيث نود أن تشمل الميزات مع P فترة ثانية. الآن فترة P هو التردد. ويمكننا بعد ذلك اختيار وقت ثابت T تعطى من قبل. ومع ذلك نحن نعلم أننا قد فقدت حوالي 30 من الناتج (-3dB) في. وبالتالي اختيار ثابت الوقت الذي يتوافق تماما مع الدوريات نود الاحتفاظ بها ليست أفضل مخطط. فمن الأفضل عادة لاختيار تردد قطع أعلى قليلا، ويقول. الوقت ثابت ثم الذي من الناحية العملية هو مماثل ل. وهذا يقلل من الخسارة إلى حوالي 15 في هذه التواتر. وبالتالي من الناحية العملية للاحتفاظ الأحداث مع دورية أو أكبر ثم اختيار ثابت الوقت من. وسيتضمن ذلك آثار التواتر التي تصل إلى حوالي. على سبيل المثال إذا كنا نود أن تشمل آثار الأحداث يحدث مع القول فترة 8 ثانية (0.125Hz) ثم اختيار ثابت الوقت من 0.8 ثانية. وهذا يعطي تردد قطع ما يقرب من 0.2Hz بحيث لدينا 8 فترة ثانية بشكل جيد في الفرقة الرئيسية لتمرير مرشح. إذا كنا أخذ العينات البيانات في 20 تيمسيكوند (h 0.05) ثم قيمة N هو (0.80.05) 16 و. هذا يعطي بعض نظرة ثاقبة كيفية تعيين. في الأساس لمعدل عينة معروفة فإنه يدل على فترة المتوسط ​​ويختار أي تذبذب الترددات العالية سيتم تجاهلها. من خلال النظر في التوسع في خوارزمية يمكننا أن نرى أنه يفضل أحدث القيم، وأيضا لماذا يشار إليها على أنها ترجيح أسي. لدينا بديل ل y k-1 يعطي تكرار هذه العملية عدة مرات يؤدي إلى لأنه في النطاق ومن الواضح أن المصطلحات إلى اليمين تصبح أصغر وتتصرف مثل أسي المتحللة. وهذا هو الناتج الحالي منحازة نحو الأحداث الأخيرة ولكن أكبر نختار T ثم أقل التحيز. وباختصار نرى أن الصيغة البسيطة تؤكد الأحداث الأخيرة التي تمهد أحداث عالية التردد (فترة قصيرة) تكشف عن الاتجاهات على المدى الطويل التذييل 1 8211 أشكال بديلة من المعادلة الحذر هناك نوعان من معادلة المتوسط ​​الأسي التي تظهر في الأدب. وكلاهما صحيح ومكافئ. الشكل الأول كما هو مبين أعلاه هو (A1) الشكل البديل هو 8230 (A2) لاحظ استخدام في المعادلة الأولى وفي المعادلة الثانية. في كل من المعادلات وقيم بين الصفر والوحدة. في وقت سابق كان يعرف الآن اختيار لتحديد وبالتالي فإن الشكل البديل لمعادلة المتوسط ​​الأسي هو من الناحية المادية وهذا يعني أن اختيار شكل واحد يستخدم يعتمد على كيف يريد المرء أن يفكر في اتخاذ كمعادلة الجزء الخلفي تغذية (A1) أو كجزء من معادلة المدخلات (A2). الشكل الأول هو أقل قليلا مرهقة في إظهار العلاقة مرشح أرسي، ويؤدي إلى فهم أكثر بساطة في شروط التصفية. رئيس مختبر معالجة الإشارات في بروسيغ الدكتور كولين ميرسر كان سابقا في معهد بحوث الصوت والاهتزاز (إسفر)، جامعة ساوثهامبتون حيث أسس مركز تحليل البيانات. ثم ذهب إلى العثور على بروسيغ في عام 1977. تقاعد كولين كرئيس لمحلل معالجة الإشارات في بروسيغ في ديسمبر 2016. وهو مهندس تشارترد وزميل في جمعية الكمبيوتر البريطانية. أعتقد أنك تريد تغيير 8216p8217 إلى رمز بي. ماركو، شكرا لك لافتا الى ذلك. أعتقد أن هذه إحدى مقالاتنا القديمة التي تم نقلها من وثيقة معالجة النصوص القديمة. ومن الواضح أن المحرر (لي) فشل في اكتشاف أن بي لم يتم نسخه بشكل صحيح. سيتم تصحيحها قريبا. it8217s تفسير مادة جيدة جدا عن المتوسط ​​المتوسط ​​أسي أعتقد أن هناك خطأ في صيغة ل T. وينبغي أن يكون T ح (N-1)، وليس T (N-1) ح. مايك، شكرا على اكتشاف ذلك. لقد راجعت للتو مرة أخرى إلى الدكتور Mercer8217s مذكرة التقنية الأصلية في أرشيفنا ويبدو أن هناك خطأ ارتكبت عند نقل المعادلات إلى بلوق. سنقوم بتصحيح المشاركة. شكرا لك على إعلامنا شكرا لك شكرا لك شكرا. يمكنك قراءة 100 نصوص دسب دون العثور على أي شيء يقول أن مرشح متوسط ​​أسي هو ما يعادل مرشح R-C. هم، هل لديك معادلة لتصفية إما الصحيح هو ليس يك أككك (1-أ) يك-1 بدلا من يك أيك-1 (1-أ) هك ألان، كلا الشكلين من المعادلة تظهر في الأدب، و كلا النموذجين صحيحة كما سوف تظهر أدناه. النقطة التي تقوم بها مهمة واحدة لأن استخدام النموذج البديل يعني أن العلاقة الفعلية مع مرشح أرسي هو أقل وضوحا، وعلاوة على ذلك تفسير معنى المبين في المادة غير مناسب للشكل البديل. أولا دعونا تظهر كلا الشكلين صحيحة. شكل المعادلة التي استخدمتها هو والشكل البديل الذي يظهر في العديد من النصوص هو ملاحظة في أعلاه لقد استخدمت اللاتكس 1latex في المعادلة الأولى واللاتكس 2latex في المعادلة الثانية. يظهر المساواة بين كلا الشكلين من المعادلة رياضيا دون اتخاذ خطوات بسيطة في وقت واحد. ما هو ليس هو نفسه القيمة المستخدمة اللاتكس اللاتكس في كل معادلة. في كلا الشكلين اللاتكس اللاتكس هو قيمة بين الصفر والوحدة. أولا إعادة كتابة المعادلة (1) استبدال اللاتكس 1 لاتكس من اللاتكس اللاتكس. وهذا يعطي لاتكسيك y (1 - بيتا) زكلاتكس 8230 (1A) الآن تحديد اللاتكسبيتا (1 - 2) اللاتكس وذلك لدينا أيضا اللاتكس 2 (1 - بيتا) اللاتكس. استبدال هذه في المعادلة (1A) يعطي لاتكسيك (1 - 2) y 2xklatex 8230 (1B) وأخيرا إعادة ترتيب يعطي هذه المعادلة مطابقة للشكل البديل الواردة في المعادلة (2). وضع اللاتكس أكثر اللاتكس 2 (1 - 1) اللاتكس. من الناحية المادية فهذا يعني أن اختيار شكل واحد يستخدم يعتمد على كيف يريد المرء أن يفكر في اتخاذ إما اللاتكسالفالاتكس كمعادلة الجزء الخلفي تغذية (1) أو كجزء من المعادلة المدخلات (2). كما ذكر أعلاه لقد استخدمت النموذج الأول كما هو أقل قليلا مرهقة في إظهار العلاقة مرشح أرسي، ويؤدي إلى فهم أبسط في شروط التصفية. ومع ذلك حذف ما سبق هو، في رأيي، وجود نقص في المادة كما أن الناس الآخرين يمكن أن تجعل الاستدلال غير صحيح لذلك سوف تظهر نسخة منقحة قريبا. I8217ve تساءلت دائما عن هذا، وذلك بفضل لوصف ذلك بشكل واضح جدا. وأعتقد أن سبب آخر الصيغة الأولى هي لطيفة ألفا خرائط ل 8216smoothness8217: خيار أعلى من ألفا يعني 8216more على نحو سلس 8217 الإخراج. مايكل شكرا للمراقبة 8211 سوف أضيف إلى المقال شيئا على تلك الخطوط كما هو الحال دائما أفضل في رأيي أن تتصل بالجوانب المادية. الدكتور ميرسر، المادة ممتازة، شكرا لك. لدي سؤال حول ثابت الوقت عند استخدامها مع كاشف رمز كما هو الحال في متر مستوى الصوت التي تشير إليها في هذه المادة. إذا كنت تستخدم المعادلات الخاصة بك لنموذج مرشح أسي مع الوقت ثابت 125ms واستخدام إشارة خطوة الإدخال، أنا في الواقع الحصول على الإخراج الذي، بعد 125ms، هو 63.2 من القيمة النهائية. ومع ذلك، إذا أنا مربع إشارة الدخل ووضع هذا من خلال مرشح، ثم أرى أنني بحاجة إلى مضاعفة ثابت الوقت من أجل إشارة لتصل إلى 63.2 من قيمتها النهائية في 125ms. هل يمكن أن تخبرني إذا كان هذا متوقعا. تشكرات. إيان إيان، إذا كنت مربع إشارة مثل موجة جيبية ثم أساسا كنت مضاعفة وتيرة الأساسية، فضلا عن إدخال الكثير من الترددات الأخرى. لأن التردد قد تضاعف في الواقع ثم يجري 8216reduced8217 بمقدار أكبر من قبل مرشح تمريرة منخفضة. ونتيجة لذلك يستغرق وقتا أطول للوصول إلى نفس السعة. عملية التربيع هي عملية غير خطية لذلك أنا لا أعتقد أنها سوف تتضاعف دائما على وجه التحديد في جميع الحالات ولكن سوف تميل إلى مضاعفة إذا كان لدينا تردد منخفض المهيمنة. نلاحظ أيضا أن التفاضلية للإشارة مربع هو ضعف الفرق من إشارة 8220un - سكارد 8221. أظن أنك قد تحاول الحصول على شكل من أشكال يعني مربع التنعيم، وهو على ما يرام تماما وصالحة. قد يكون من الأفضل تطبيق فلتر ثم مربع كما تعلمون قطع فعالة. ولكن إذا كان كل ما لديك هو إشارة مربعة ثم استخدام عامل 2 لتعديل قيمة ألفا مرشح الخاص بك سوف تحصل تقريبا على العودة إلى تردد قطع الأصلي، أو وضعه أبسط قليلا تحديد تردد قطع الخاص بك في مرتين الأصلي. شكرا على ردكم الدكتور ميرسر. سؤالي كان يحاول حقا الحصول على ما يتم فعلا في كاشف جذر متوسط ​​التربيع لمقياس مستوى الصوت. إذا تم تعيين ثابت الوقت ل 8216 فاست 8217 (125ms) كنت قد فكرت أن حدسي كنت تتوقع إشارة إدخال جيبية لإنتاج الناتج من 63.2 من قيمتها النهائية بعد 125ms، ولكن منذ يتم تربيع إشارة قبل أن يحصل على 8216mean8217 الكشف، وسوف تأخذ في الواقع مرتين طالما كنت أوضح. الهدف الأساسي من هذه المادة هو إظهار تكافؤ تصفية أرسي والمتوسط ​​الأسي. إذا كنا نناقش وقت التكامل يعادل تكامل مستطيل صحيح ثم كنت على حق أن هناك عامل اثنين من المعنيين. أساسا إذا كان لدينا تكامل مستطيلة الحقيقي الذي يدمج ل تي ثوان ما يعادل الوقت أرسي التكامل لتحقيق نفس النتيجة هي 2RC ثانية. تي يختلف عن أرسي 8216time ثابت 8217 T الذي هو أرسي. وبالتالي إذا كان لدينا 8216Fast8217 ثابت الوقت من 125 مللي ثانية، وهذا هو أرسي 125 مللي ثانية ثم أن ما يعادل وقت التكامل الحقيقي من 250 ميللي ثانية شكرا لكم على هذه المادة، كان مفيدا جدا. هناك بعض الأوراق الحديثة في علم الأعصاب التي تستخدم مزيج من مرشحات إما (قصيرة الأجل نافذة 82 إما إما لفترة طويلة نافذة) كمرشح تمرير الفرقة لتحليل إشارة في الوقت الحقيقي. وأود أن تطبيقها، ولكن أنا تكافح مع أحجام النوافذ التي استخدمت مجموعات بحثية مختلفة ومراسلاته مع تردد قطع. ويقول Let8217s أريد أن أبقي على جميع الترددات أدناه 0.5Hz (أبروكس) وأنني الحصول على 10 عينات الثانية. وهذا يعني أن فب 0.5Hz P 2s T P100.2 h 1fs0.1 ولذلك، يجب أن يكون حجم النافذة I يجب أن تستخدم N3. هل هذا المنطق صحيح قبل الإجابة على سؤالك يجب أن أعلق على استخدام اثنين من مرشحات تمريرة عالية لتشكيل مرشح تمرير الفرقة. ويفترض أنها تعمل كما تيارات منفصلة اثنين، لذلك نتيجة واحدة هي المحتوى من يقول اللاتكس اللاتكس إلى نصف معدل العينة والآخر هو محتوى من اللاتكس اللاتكسف إلى نصف معدل العينة. إذا كان كل ما يتم القيام به هو الفرق في متوسط ​​مستويات مربع كما يدل على قوة في الفرقة من اللاتكس اللاتكس اللاتكس اللاتكس ثم قد يكون من المعقول إذا كان قطع اثنين ترددات متباعدة بما فيه الكفاية ولكن أتوقع أن الناس باستخدام هذه التقنية تحاول محاكاة مرشح نطاق أضيق. وفي رأيي أن ذلك لا يمكن الاعتماد عليه للعمل الجاد، وسيكون مصدرا للقلق. للاشارة فقط مرشح تمرير الفرقة هو مزيج من التردد المنخفض عالية تمرير مرشح لإزالة الترددات المنخفضة وارتفاع وتيرة مرشح تمرير منخفض لإزالة الترددات العالية. هناك بالطبع تمريرة منخفضة شكل من مرشح أرسي، وبالتالي إيما المقابلة. ربما على الرغم من أن حكمي هو أكثر من الحرجة دون معرفة كل الحقائق لذا هل يمكن أن يرجى أن ترسل لي بعض الإشارات إلى الدراسات التي ذكرتها لذلك أنا قد نقد حسب الاقتضاء. ربما أنهم يستخدمون تمريرة منخفضة وكذلك مرشح تمريرة عالية. الآن تحول إلى السؤال الفعلي الخاص بك حول كيفية تحديد N لهدف معين قطع تردد أعتقد أنه من الأفضل استخدام المعادلة الأساسية T (N-1) ح. وكانت المناقشة حول الفترات تهدف إلى إعطاء الناس الشعور بما يجري. لذا يرجى الاطلاع على الاشتقاق أدناه. لدينا علاقات لاتكست (N-1) هلاتكس و اللاتكس 12 اللاتكس حيث اللاتكسفلاتكس هو افتراضية قطع تردد و h هو الوقت بين العينات، اللثي بشكل واضح 1 اللاتكس حيث لاتكسفسلاتكس هو معدل العينة في سامبليسيك. إعادة ترتيب T (N-1) h في شكل مناسب لتشمل تردد قطع، ليتكسفلاتكس ومعدل العينة، ليتكسفسلاتكس، هو مبين أدناه. وذلك باستخدام ليتكسفك 0.5Hzlatex و ليتكسفس 10latex سامبليسيك بحيث اللاتكس (ففس) 0.05latex يعطي لذلك أقرب قيمة صحيحة هي 4. إعادة ترتيب ما سبق لدينا حتى مع N4 لدينا ليتكسفك 0.5307 هزلاتكس. باستخدام N3 يعطي اللاتكسفلاتكس من 0.318 هرتز. ملاحظة مع N1 لدينا نسخة كاملة مع عدم وجود تصفية. المتوسط ​​المتحرك ونماذج التمهيد الأسي كخطوة أولى في التحرك ما وراء النماذج المتوسطة، نماذج المشي العشوائي، ونماذج الاتجاه الخطي، أنماط غير مواضيعية والاتجاهات يمكن استقراء باستخدام متحرك المتوسط ​​أو نموذج تمهيد. الافتراض الأساسي وراء المتوسطات ونماذج التمهيد هو أن السلاسل الزمنية ثابتة محليا بمتوسط ​​متغير ببطء. وبالتالي، فإننا نأخذ متوسطا متحركا (محلي) لتقدير القيمة الحالية للمتوسط ​​ومن ثم استخدامه كمؤشر للمستقبل القريب. ويمكن اعتبار ذلك بمثابة حل توفيقي بين النموذج المتوسط ​​ونموذج المشي العشوائي بدون الانجراف. ويمكن استخدام نفس الاستراتيجية لتقدير الاتجاه المحلي واستقراءه. وعادة ما يطلق على المتوسط ​​المتحرك نسخة كوتسموثيدكوت من السلسلة الأصلية لأن المتوسط ​​على المدى القصير له تأثير على إزالة المطبات في السلسلة الأصلية. من خلال تعديل درجة التمهيد (عرض المتوسط ​​المتحرك)، يمكننا أن نأمل في ضرب نوع من التوازن الأمثل بين أداء المتوسط ​​و نماذج المشي العشوائي. أبسط نوع من نموذج المتوسط ​​هو. المتوسط ​​المتحرك البسيط (بالتساوي المرجح): تقدر قيمة قيمة Y في الوقت t1 التي يتم إجراؤها في الوقت t بالمتوسط ​​البسيط لآخر ملاحظات m: (هنا وفي مكان آخر سأستخدم الرمز 8220Y-hat8221 للوقوف للتنبؤ بالسلسلة الزمنية Y التي أجريت في أقرب موعد ممكن من قبل نموذج معين.) ويتركز هذا المتوسط ​​في الفترة t - (m1) 2، مما يعني أن تقدير المتوسط ​​المحلي سوف تميل إلى التخلف عن الحقيقة قيمة المتوسط ​​المحلي بنحو (m1) فترتين. وبالتالي، نقول أن متوسط ​​عمر البيانات في المتوسط ​​المتحرك البسيط هو (m1) 2 بالنسبة إلى الفترة التي يتم فيها احتساب التوقعات: هذا هو مقدار الوقت الذي تميل التنبؤات إلى التخلف عن نقاط التحول في البيانات . على سبيل المثال، إذا كنت تقوم بحساب متوسط ​​القيم الخمس الأخيرة، فإن التوقعات ستكون حوالي 3 فترات متأخرة في الاستجابة لنقاط التحول. ويلاحظ أنه في حالة M1، فإن نموذج المتوسط ​​المتحرك البسيط (سما) يساوي نموذج المشي العشوائي (بدون نمو). وإذا كانت m كبيرة جدا (مماثلة لطول فترة التقدير)، فإن نموذج سما يعادل النموذج المتوسط. وكما هو الحال مع أي معلمة لنموذج التنبؤ، من العرفي أن تعدل قيمة k من أجل الحصول على أفضل قيمة ممكنة للبيانات، أي أصغر أخطاء التنبؤ في المتوسط. وفيما يلي مثال لسلسلة يبدو أنها تظهر تقلبات عشوائية حول متوسط ​​متغير ببطء. أولا، يتيح محاولة لتناسب ذلك مع نموذج المشي العشوائي، وهو ما يعادل متوسط ​​متحرك بسيط من 1 مصطلح: نموذج المشي العشوائي يستجيب بسرعة كبيرة للتغيرات في هذه السلسلة، ولكن في ذلك يفعل ذلك يختار الكثير من كوتنويسكوت في البيانات (التقلبات العشوائية) وكذلك كوتسيغنالكوت (المتوسط ​​المحلي). إذا حاولنا بدلا من ذلك متوسط ​​متحرك بسيط من 5 مصطلحات، نحصل على مجموعة أكثر سلاسة من التوقعات: المتوسط ​​المتحرك البسيط لمدة 5 سنوات ينتج أخطاء أقل بكثير من نموذج المشي العشوائي في هذه الحالة. متوسط ​​عمر البيانات في هذه التوقعات هو 3 ((51) 2)، بحيث تميل إلى التخلف عن نقاط التحول بنحو ثلاث فترات. (على سبيل المثال، يبدو أن الانكماش قد حدث في الفترة 21، ولكن التوقعات لا تتحول حتى عدة فترات في وقت لاحق). لاحظ أن التوقعات على المدى الطويل من نموذج سما هي خط مستقيم أفقي، تماما كما في المشي العشوائي نموذج. وبالتالي، يفترض نموذج سما أنه لا يوجد اتجاه في البيانات. ومع ذلك، في حين أن التنبؤات من نموذج المشي العشوائي هي ببساطة مساوية للقيمة الملاحظة الأخيرة، والتنبؤات من نموذج سما يساوي المتوسط ​​المرجح للقيم الأخيرة. إن حدود الثقة المحسوبة من قبل ستاتغرافيكس للتنبؤات طويلة الأجل للمتوسط ​​المتحرك البسيط لا تتسع مع زيادة أفق التنبؤ. ومن الواضح أن هذا غير صحيح لسوء الحظ، لا توجد نظرية إحصائية أساسية تخبرنا كيف يجب أن تتسع فترات الثقة لهذا النموذج. ومع ذلك، ليس من الصعب جدا حساب التقديرات التجريبية لحدود الثقة للتنبؤات الأطول أجلا. على سبيل المثال، يمكنك إعداد جدول بيانات سيتم فيه استخدام نموذج سما للتنبؤ بخطوتين إلى الأمام، و 3 خطوات إلى الأمام، وما إلى ذلك ضمن عينة البيانات التاريخية. يمكنك بعد ذلك حساب الانحرافات المعيارية للعينة في كل أفق للتنبؤ، ومن ثم بناء فترات ثقة للتنبؤات الأطول أجلا عن طريق جمع وطرح مضاعفات الانحراف المعياري المناسب. إذا حاولنا متوسط ​​متحرك بسيط لمدة 9 سنوات، نحصل على توقعات أكثر سلاسة وأكثر تأثيرا متخلفا: متوسط ​​العمر هو الآن 5 فترات ((91) 2). إذا أخذنا متوسط ​​متحرك لمدة 19 عاما، فإن متوسط ​​العمر يزيد إلى 10: لاحظ أن التوقعات تتخلف الآن عن نقاط التحول بنحو 10 فترات. أي كمية من التجانس هو الأفضل لهذه السلسلة هنا جدول يقارن إحصاءات الخطأ، بما في ذلك أيضا متوسط ​​3 المدى: نموذج C، المتوسط ​​المتحرك لمدة 5 سنوات، ينتج أقل قيمة رمز بهامش صغير على 3 المتوسطات و 9-المدى، وإحصاءاتهم الأخرى متطابقة تقريبا. لذلك، من بين نماذج مع إحصاءات الخطأ مشابهة جدا، يمكننا أن نختار ما إذا كنا نفضل استجابة أكثر قليلا أو أكثر قليلا نعومة في التوقعات. (العودة إلى أعلى الصفحة.) براونز بسيط الأسي تمهيد (المتوسط ​​المتحرك المرجح أضعافا) نموذج المتوسط ​​المتحرك البسيط المذكورة أعلاه لديه الخاصية غير المرغوب فيها أنه يعامل الملاحظات k الماضية بالتساوي تماما ويتجاهل جميع الملاحظات السابقة. بشكل حدسي، يجب أن يتم خصم البيانات السابقة بطريقة أكثر تدرجية - على سبيل المثال، يجب أن تحصل على الملاحظة الأخيرة أكثر قليلا من الوزن الثاني من أحدث، و 2 أحدث يجب الحصول على وزن أكثر قليلا من 3 أحدث، و هكذا. نموذج التمهيد الأسي بسيط (سيس) يحقق هذا. اسمحوا 945 تدل على كونتسموثينغ كونستانتكوت (عدد بين 0 و 1). طريقة واحدة لكتابة النموذج هو تعريف سلسلة L التي تمثل المستوى الحالي (أي القيمة المتوسطة المحلية) من السلسلة كما يقدر من البيانات حتى الوقت الحاضر. يتم حساب قيمة L في الوقت t بشكل متكرر من قيمته السابقة مثل هذا: وهكذا، فإن القيمة الملساء الحالية هي الاستكمال الداخلي بين القيمة الملساء السابقة والمراقبة الحالية، حيث 945 تسيطر على التقارب من قيمة محرف إلى الأحدث الملاحظة. التوقعات للفترة القادمة هي ببساطة القيمة الملساء الحالية: على نحو مماثل، يمكننا التعبير عن التوقعات القادمة مباشرة من حيث التوقعات السابقة والملاحظات السابقة، في أي من الإصدارات المكافئة التالية. في النسخة الأولى، والتنبؤ هو الاستيفاء بين التوقعات السابقة والملاحظة السابقة: في النسخة الثانية، ويتم الحصول على التوقعات القادمة عن طريق ضبط التوقعات السابقة في اتجاه الخطأ السابق من قبل كمية كسور 945. هو الخطأ المحرز في الوقت t. أما في النسخة الثالثة، فإن التنبؤ هو المتوسط ​​المتحرك المرجح ألسعاره (أي مخفضة) مع عامل الخصم 1- 945: إصدار الاستكمال الداخلي لصيغة التنبؤ هو أبسط الاستخدام إذا كنت تنفذ النموذج على جدول بيانات: خلية واحدة ويحتوي على مراجع الخلية مشيرا إلى التوقعات السابقة، الملاحظة السابقة، والخلية حيث يتم تخزين قيمة 945. لاحظ أنه إذا كان 945 1، فإن نموذج سيس يساوي نموذج المشي العشوائي (بدون نمو). وإذا كان 945 0، فإن نموذج سيس يعادل النموذج المتوسط، على افتراض أن القيمة الملساء الأولى موضوعة تساوي المتوسط. (العودة إلى أعلى الصفحة). يبلغ متوسط ​​عمر البيانات في توقعات التمهيد الأسي البسيط 945 1 بالنسبة للفترة التي يتم فيها حساب التوقعات. (وهذا ليس من المفترض أن يكون واضحا، ولكن يمكن بسهولة أن تظهر من خلال تقييم سلسلة لانهائية). وبالتالي، فإن متوسط ​​المتوسط ​​المتحرك بسيط يميل إلى التخلف عن نقاط التحول بنحو 1 945 فترات. على سبيل المثال، عندما يكون 945 0.5 الفارق الزمني هو فترتين عندما يكون 945 0.2 الفارق الزمني هو 5 فترات عندما يكون 945 0.1 الفارق الزمني هو 10 فترات، وهكذا. وبالنسبة إلى متوسط ​​عمر معين (أي مقدار التأخير)، فإن توقعات التمهيد الأسي البسيط تفوق إلى حد ما توقعات المتوسط ​​المتحرك البسيط (سما) لأنها تضع وزنا أكبر نسبيا على الملاحظة الأخيرة - أي. هو أكثر قليلا كوريبرسونسيفكوت إلى التغييرات التي تحدث في الماضي القريب. على سبيل المثال، نموذج سما مع 9 شروط ونموذج سيس مع 945 0.2 على حد سواء لديها متوسط ​​عمر 5 للبيانات في توقعاتها، ولكن نموذج سيس يضع وزنا أكبر على القيم 3 الماضية مما يفعل نموذج سما وفي في الوقت نفسه فإنه don8217t تماما 8220forget8221 حول القيم أكثر من 9 فترات القديمة، كما هو مبين في هذا المخطط: ميزة أخرى هامة من نموذج سيس على نموذج سما هو أن نموذج سيس يستخدم معلمة تمهيد التي هي متغيرة باستمرار، لذلك يمكن بسهولة الأمثل باستخدام خوارزمية كوتسولفيركوت لتقليل متوسط ​​الخطأ التربيعي. وتبين القيمة المثلى ل 945 في نموذج سيس لهذه السلسلة 0.2961، كما هو مبين هنا: متوسط ​​عمر البيانات في هذا التنبؤ هو 10.2961 3.4 فترات، وهو ما يشبه متوسط ​​المتوسط ​​المتحرك البسيط لمدة 6. والتنبؤات الطويلة الأجل من نموذج الخدمة الاقتصادية والاجتماعية هي خط مستقيم أفقي. كما هو الحال في نموذج سما ونموذج المشي العشوائي دون نمو. ومع ذلك، لاحظ أن فترات الثقة التي يحسبها ستاتغرافيكس الآن تتباعد بطريقة معقولة المظهر، وأنها هي أضيق بكثير من فترات الثقة لنموذج المشي العشوائي. ويفترض نموذج سيس أن المسلسل إلى حد ما يمكن التنبؤ به أكثر من ذلك لا نموذج المشي العشوائي. نموذج سيس هو في الواقع حالة خاصة من نموذج أريما. وبالتالي فإن النظرية الإحصائية لنماذج أريما توفر أساسا سليما لحساب فترات الثقة لنموذج سيس. على وجه الخصوص، نموذج سيس هو نموذج أريما مع اختلاف واحد غير منطقي، وهو ما (1) المدى، وليس هناك مصطلح ثابت. والمعروف باسم كوتاريما (0،1،1) نموذج دون كونستانتكوت. معامل ما (1) في نموذج أريما يتوافق مع الكمية 1- 945 في نموذج سيس. على سبيل المثال، إذا كنت تناسب نموذج أريما (0،1،1) دون ثابت لسلسلة تحليلها هنا، فإن ما المقدرة (1) معامل تبين أن يكون 0.7029، وهو تقريبا تقريبا واحد ناقص 0.2961. ومن الممكن إضافة افتراض اتجاه خطي ثابت غير صفري إلى نموذج سيس. للقيام بذلك، مجرد تحديد نموذج أريما مع اختلاف واحد نونسونالونال و ما (1) المدى مع ثابت، أي أريما (0،1،1) نموذج مع ثابت. وعندئذ سيكون للتنبؤات الطويلة الأجل اتجاه يساوي متوسط ​​الاتجاه الذي لوحظ خلال فترة التقدير بأكملها. لا يمكنك القيام بذلك بالتزامن مع التعديل الموسمية، لأن خيارات التعديل الموسمية يتم تعطيل عند تعيين نوع النموذج إلى أريما. ومع ذلك، يمكنك إضافة اتجاه أسي ثابت على المدى الطويل إلى نموذج بسيط الأسي تمهيد (مع أو بدون تعديل موسمي) باستخدام خيار تعديل التضخم في إجراء التنبؤ. ويمكن تقدير معدل كوتينفلاتيونكوت المناسب (نسبة النمو) لكل فترة على أنها معامل الانحدار في نموذج الاتجاه الخطي المجهز بالبيانات بالتزامن مع تحول لوغاريتم طبيعي، أو يمكن أن يستند إلى معلومات مستقلة أخرى تتعلق باحتمالات النمو على المدى الطويل . (العودة إلى أعلى الصفحة). البني الخطي (أي مزدوج) تجانس الأسي نماذج سما ونماذج سيس تفترض أنه لا يوجد أي اتجاه من أي نوع في البيانات (التي عادة ما تكون موافق أو على الأقل ليست سيئة جدا لمدة 1- والتنبؤ بالمتابعة عندما تكون البيانات صاخبة نسبيا)، ويمكن تعديلها لإدراج اتجاه خطي ثابت كما هو مبين أعلاه. ماذا عن الاتجاهات على المدى القصير إذا كانت سلسلة يعرض معدل نمو متفاوت أو نمط دوري الذي يبرز بوضوح ضد الضوضاء، وإذا كان هناك حاجة للتنبؤ أكثر من 1 فترة المقبلة، ثم قد يكون تقدير الاتجاه المحلي أيضا قضية. ويمكن تعميم نموذج التمهيد الأسي البسيط للحصول على نموذج تمهيد أسي خطي (ليس) يحسب التقديرات المحلية لكل من المستوى والاتجاه. أبسط نموذج الاتجاه المتغير بمرور الوقت هو نموذج تمهيد الأسي الخطي براون، والذي يستخدم سلسلتين مختلفتين تمهيدهما تتمركزان في نقاط مختلفة من الزمن. وتستند صيغة التنبؤ إلى استقراء خط من خلال المركزين. (ويمكن مناقشة الشكل الأكثر تطورا من هذا النموذج، هولت 8217s أدناه). ويمكن التعبير عن شكل جبري من نموذج التجانس الأسي الخطي البني 8217s، مثل نموذج التجانس الأسي البسيط، في عدد من الأشكال المختلفة ولكن المكافئة. وعادة ما يعبر عن الشكل المعياري للنموذج من هذا النموذج على النحو التالي: اسمحوا S تدل على سلسة سلسة السلسلة التي تم الحصول عليها عن طريق تطبيق تمهيد الأسي بسيط لسلسلة Y. وهذا هو، يتم إعطاء قيمة S في الفترة t من قبل: (أذكر أنه تحت بسيطة الأسفل، وهذا سيكون التنبؤ ل Y في الفترة t1.) ثم اسمحوا سكوت تدل على سلسلة مضاعفة مضاعفة التي تم الحصول عليها من خلال تطبيق التمهيد الأسي بسيطة (باستخدام نفس 945) لسلسلة S: وأخيرا، والتوقعات ل تك تك. عن أي kgt1، تعطى بواسطة: هذه الغلة e 1 0 (أي الغش قليلا، والسماح للتوقعات الأولى تساوي الملاحظة الأولى الفعلية)، و e 2 Y 2 8211 Y 1. وبعد ذلك يتم توليد التنبؤات باستخدام المعادلة أعلاه. وهذا يعطي نفس القيم المجهزة كالصيغة المستندة إلى S و S إذا كانت الأخيرة قد بدأت باستخدام S 1 S 1 Y 1. يستخدم هذا الإصدار من النموذج في الصفحة التالية التي توضح مجموعة من التجانس الأسي مع التعديل الموسمية. هولت 8217s الخطي الأسي تمهيد البني 8217s نموذج ليس يحسب التقديرات المحلية من المستوى والاتجاه من خلال تمهيد البيانات الأخيرة، ولكن حقيقة أنه يفعل ذلك مع معلمة تمهيد واحد يضع قيدا على أنماط البيانات التي هي قادرة على تناسب: المستوى والاتجاه لا يسمح لها أن تختلف بمعدلات مستقلة. ويعالج نموذج هولت 8217s ليس هذه المسألة عن طريق تضمين اثنين من الثوابت تمهيد، واحدة للمستوى واحد للاتجاه. في أي وقت t، كما هو الحال في نموذج Brown8217s، هناك تقدير ل t من المستوى المحلي وتقدير t ر للاتجاه المحلي. وهنا يتم حسابها بشكل متكرر من قيمة Y الملاحظة في الوقت t والتقديرات السابقة للمستوى والاتجاه من خلال معادلتين تنطبقان على تمهيد أسي لها بشكل منفصل. وإذا كان المستوى المقدر والاتجاه في الوقت t-1 هما L t82091 و T t-1. على التوالي، فإن التنبؤ ب Y تشي الذي كان سيجري في الوقت t-1 يساوي L t-1 T t-1. وعند ملاحظة القيمة الفعلية، يحسب التقدير المحدث للمستوى بصورة متكررة بالاستكمال الداخلي بين Y تشي وتوقعاته L t-1 T t-1 باستعمال أوزان 945 و1-945. والتغير في المستوى المقدر، وهي L t 8209 L t82091. يمكن تفسيرها على أنها قياس صاخبة للاتجاه في الوقت t. ثم يتم حساب التقدير المحدث للاتجاه بشكل متكرر عن طريق الاستكمال الداخلي بين L t 8209 L t82091 والتقدير السابق للاتجاه T t-1. وذلك باستخدام أوزان 946 و 1-946: تفسير ثابت ثابت تمهيد 946 مماثل لتلك التي من 9500 تمهيد مستوى ثابت. نماذج ذات قيم صغيرة من 946 نفترض أن الاتجاه يتغير ببطء شديد مع مرور الوقت، في حين أن النماذج مع أكبر 946 تفترض أنها تتغير بسرعة أكبر. ويعتقد نموذج مع كبير 946 أن المستقبل البعيد غير مؤكد جدا، لأن الأخطاء في تقدير الاتجاه تصبح مهمة جدا عند التنبؤ أكثر من فترة واحدة المقبلة. (العودة إلى أعلى الصفحة). ويمكن تقدير ثوابت التنعيم 945 و 946 بالطريقة المعتادة من خلال تقليل الخطأ المتوسط ​​التربيعي للتنبؤات ذات الخطوة الأولى. عندما يتم ذلك في ستاترافيكس، وتظهر التقديرات إلى أن 945 0.3048 و 946 0.008. القيمة الصغيرة جدا 946 تعني أن النموذج يفترض تغير طفيف جدا في الاتجاه من فترة إلى أخرى، وذلك أساسا هذا النموذج هو محاولة لتقدير الاتجاه على المدى الطويل. وبالمقارنة مع فكرة متوسط ​​عمر البيانات المستخدمة في تقدير المستوى المحلي للسلسلة، فإن متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي يتناسب مع 1 946، وإن لم يكن يساويها بالضبط . في هذه الحالة تبين أن تكون 10.006 125. هذا هو 8217t عدد دقيق جدا بقدر دقة تقدير 946 isn8217t حقا 3 المنازل العشرية، ولكن من نفس الترتيب العام من حيث حجم العينة من 100، لذلك هذا النموذج هو المتوسط ​​على مدى الكثير جدا من التاريخ في تقدير هذا الاتجاه. ويبين مخطط التنبؤ الوارد أدناه أن نموذج ليس يقدر اتجاه محلي أكبر قليلا في نهاية السلسلة من الاتجاه الثابت المقدر في نموذج سيترند. كما أن القيمة المقدرة ل 945 تكاد تكون مطابقة لتلك التي تم الحصول عليها من خلال تركيب نموذج سيس مع أو بدون اتجاه، لذلك هذا هو تقريبا نفس النموذج. الآن، هل هذه تبدو وكأنها توقعات معقولة لنموذج من المفترض أن يكون تقدير الاتجاه المحلي إذا كنت 8220eyeball8221 هذه المؤامرة، يبدو كما لو أن الاتجاه المحلي قد تحولت إلى أسفل في نهاية السلسلة ما حدث المعلمات من هذا النموذج قد تم تقديرها من خلال تقليل الخطأ المربعة للتنبؤات 1-خطوة إلى الأمام، وليس التنبؤات على المدى الطويل، في هذه الحالة لا يوجد 8217t الاتجاه الكثير من الفرق. إذا كان كل ما كنت تبحث في 1-خطوة قبل الأخطاء، كنت لا ترى الصورة الأكبر للاتجاهات أكثر (مثلا) 10 أو 20 فترات. من أجل الحصول على هذا النموذج أكثر في تناغم مع استقراء العين مقلة العين من البيانات، يمكننا ضبط ثابت الاتجاه تجانس يدويا بحيث يستخدم خط الأساس أقصر لتقدير الاتجاه. على سبيل المثال، إذا اخترنا تعيين 946 0.1، ثم متوسط ​​عمر البيانات المستخدمة في تقدير الاتجاه المحلي هو 10 فترات، وهو ما يعني أننا متوسط ​​متوسط ​​الاتجاه على مدى تلك الفترات 20 الماضية أو نحو ذلك. Here8217s ما مؤامرة توقعات يبدو وكأننا وضعنا 946 0.1 مع الحفاظ على 945 0.3. هذا يبدو معقولا بشكل حدسي لهذه السلسلة، على الرغم من أنه من المحتمل أن يستقضي هذا الاتجاه أي أكثر من 10 فترات في المستقبل. ماذا عن إحصائيات الخطأ هنا هو مقارنة نموذج للنموذجين المبينين أعلاه وكذلك ثلاثة نماذج سيس. القيمة المثلى 945. لنموذج سيس هو تقريبا 0.3، ولكن يتم الحصول على نتائج مماثلة (مع استجابة أكثر قليلا أو أقل، على التوالي) مع 0.5 و 0.2. (A) هولتس الخطي إكس. تمهيد مع ألفا 0.3048 وبيتا 0.008 (B) هولتس الخطية إكس. تمهيد مع ألفا 0.3 و بيتا 0.1 (C) تمهيد الأسي بسيط مع ألفا 0.5 (D) تمهيد الأسي بسيطة مع ألفا 0.3 (E) بسيطة الأسي تمهيد مع ألفا 0.2 احصائياتهم متطابقة تقريبا، لذلك نحن حقا يمكن 8217t جعل الاختيار على أساس من 1-خطوة قبل توقعات الأخطاء داخل عينة البيانات. وعلينا أن نعود إلى الاعتبارات الأخرى. إذا كنا نعتقد اعتقادا قويا أنه من المنطقي أن يستند تقدير الاتجاه الحالي على ما حدث على مدى السنوات ال 20 الماضية أو نحو ذلك، يمكننا أن نجعل من حالة لنموذج ليس مع 945 0.3 و 946 0.1. إذا أردنا أن نكون ملحدين حول ما إذا كان هناك اتجاه محلي، فإن أحد نماذج سيس قد يكون من الأسهل تفسيره، كما سيوفر المزيد من توقعات منتصف الطريق للفترات الخمس أو العشر القادمة. (العودة إلى أعلى الصفحة). أي نوع من الاستقراء هو الأفضل: أدلة أفقية أو خطية تشير إلى أنه إذا تم تعديل البيانات (إذا لزم الأمر) للتضخم، فقد يكون من غير الحكمة استقراء الخطي القصير الأجل الاتجاهات بعيدة جدا في المستقبل. إن الاتجاهات الواضحة اليوم قد تتراجع في المستقبل بسبب أسباب متنوعة مثل تقادم المنتج، وزيادة المنافسة، والانكماش الدوري أو التحولات في صناعة ما. لهذا السبب، تجانس الأسي بسيط غالبا ما يؤدي أفضل من خارج العينة مما قد يكون من المتوقع خلاف ذلك، على الرغم من كوتنيفيكوت الاتجاه الأفقي الاستقراء. وكثيرا ما تستخدم أيضا تعديلات الاتجاه المخفف لنموذج تمهيد الأسي الخطي في الممارسة العملية لإدخال ملاحظة المحافظة على توقعات الاتجاه. ويمكن تطبيق نموذج ليس المائل للاتجاه ليس كحالة خاصة لنموذج أريما، ولا سيما نموذج أريما (1،1،2). ومن الممكن حساب فترات الثقة حول التنبؤات طويلة الأجل التي تنتجها نماذج التمهيد الأسي، من خلال اعتبارها حالات خاصة لنماذج أريما. (حذار: لا تحسب جميع البرامج فترات الثقة لهذه النماذج بشكل صحيح). يعتمد عرض فترات الثقة على (1) خطأ رمز في النموذج، (2) نوع التجانس (بسيط أو خطي) (3) القيمة (ق) من ثابت ثابت (ق) و (4) عدد الفترات المقبلة كنت التنبؤ. بشكل عام، انتشرت الفترات بشكل أسرع مع 945 يحصل أكبر في نموذج سيس وانتشرت بشكل أسرع بكثير عندما يتم استخدام خطية بدلا من تجانس بسيط. ويناقش هذا الموضوع بمزيد من التفصيل في قسم نماذج أريما من الملاحظات. (العودة إلى أعلى الصفحة.)

Comments

Popular posts from this blog

الميكانيكية المتاجرة الأنظمة التي كتبها ريتشارد - ل - ويسمان

أنظمة التداول الميكانيكي يقدم ريتشارد ويسمان للقارئ نهجا قائما على العمليات في التداول. بالإضافة إلى تطوير أنظمة التداول الميكانيكية، يتم مناقشة أهمية علم النفس التاجر في جميع أنحاء الكتاب. ويدعو السيد وايسمان ذلك إطار 8220 إعادة برمجة التاجر. 8221 ويوفر فهم واضح وراء التطوير المفاهيمي للنظم التجارية الميكانيكية وكذلك يوضح الأخطاء المحتملة من قبل مطوري النظام وطرق تجنبها. درسه الرئيسي للقارئ هو أن المرونة تمكن التجار من النجاح في جميع أنواع البيئات التجارية. تبديد الخرافات وتعريف المصطلحات في هذا الفصل يؤكد المؤلف أكثر على التحليل الفني الرياضي من التحليل الفني الكلاسيكي. كما يفسر لماذا الطريقة الرياضية للتحليل هو عنصر مثالي لنظم التداول الميكانيكية من التحليل الأساسي أو التفسيري، وبالتالي يدعي هذا كوسيلة ملائمة لتوليد الأرباح التحليل الفني الرياضي يقدم النكهات الأساسية اثنين من المؤشرات الفنية الرياضية التي هي العزوف المتوسط ​​والتحرك المتوسطات. ويوضح الفصل أيضا كيف يمكن تحويل هذه المؤشرات إلى نظم تجارية شاملة من خلال إدراج مختلف المعايير الكمية لتحديد المخاطر مثل نطاقات التقلب والنسب...

كتو - zarabia - نا - الفوركس

فوريكس 8211 نيا داج سي وبوسي w تين كانا أوتورز سزيروكو أوززي زابيون زدي جو غزي برزكزيتا، e فوريكس تو ماسينكا دو زارابيانيا بينيدزي. مو نويت جو ترافي نا سترون جاكيغو بروكيرا (إنترنيتوويغو بوريدنيكا أوفيروجسيغو إليكترونيكشن بلاتفورم هاندلو)، كتري برزيكونوج، e زروبي وزيستكو، إيبي أوسيغن جاك ناجويكس زيسكي شكودا، e ناي نابيسا، كو دلا سيبي زروبي، جاك وسيستكو ستراسيز. نيك نيا زروبي، بدزي ويتدي زاجتي زارابيانيم نا كوليجنيم مارزيسيلو. زاكشنيجمي أود بوستكو. كو تو جيست فوريكس T نازو، بوكودزك أود أنغ. العملات الأجنبية، أوكريلا سي ميدزينارودوي رينك ويمياني والوت (شو نيا تيلكو، بو أوبيكني ماجيك واسو كونتو دو ميدزينارودويج سبيكولاسجي، هاندلوا ميمي ويلوما إنيمي رزشامي، نب. روب، زوتيم. بسينيك إيتد. 8211 إيل ويكسو هاندلوجسيش سكوبيا سي نا والوتاش). نا تيم رينكو s راليزوان ترانزاكجي والوتو زارونو ناجيكسزيش إنستيتوسجي فينانزويش جاك i كلينتو إنديويدوالنيش. ترانزاكج ميمي زاويرا 24 غودزيني نا دوب، برزيز بي دني w تيغودنيو. ويكندي s وولن. جاك منى زاروبي نا تيم رينكو زارابيا سي (i نييستي كستو تراسي)، هاندلوجك وا...

الفوركس التداول الروبوت التطبيق

OANDA 1080108910871086108311001079109110771090 10921072108110831099 الكعكة، 10951090108610731099 1089107610771083107210901100 1085107210961080 10891072108110901099 10871088108610891090109910841080 1074 1080108910871086108311001079108610741072108510801080 1080 108510721089109010881086108010901100 10801093 10891086107510831072108910851086 108710861090108810771073108510861089109011031084 10851072109610801093 10871086108910771090108010901077108310771081. 10601072108110831099 الكعكة 10851077 10841086107510911090 1073109910901100 108010891087108610831100107910861074107210851099 107610831103 109110891090107210851086107410831077108510801103 10741072109610771081 10831080109510851086108910901080. 1055108610891077109710721103 108510721096 1089107210811090، 10741099 108910861075108310721096107210771090107710891100 1089 10801089108710861083110010791086107410721085108010771084 OANDA8217 +109210721081108310861074 كوكي 1074 108910861086109010741077109010891090107410801080 1089 10851072109610771081 10 ...